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Thermally stimulated discharge of a previously polarized and electroded dielectric, can 
generate a current with several peaks. The locations of the peaks along the thermally 
stimulated discharge current spectrum are characteristics of the particular mechanisms for the 
decay. Systematic analysis of the current peaks will yield information such as dipole relaxation 
characteristics and activation energies for intrinsic conduction or trapping parameters of 
electronic charges in the dielectric. When multilayer dielectrics such as amorphous 
semiconductor photoreceptors are subjected to an electret formation cycle, the heterogeneity 
in their structures may cause several polarization effects. For example, discontinuities in the 
intrinsic conductivities and dielectric constant in amorphous selenium (a-Se)-based multilayer 
photoreceptors can lead to the accumulation of space charges at the interfaces of the 
individual layers whenever the device experiences an electric stress for a period of time which 
is of the order of its effective dielectric relaxation time. Charge trapping by states associated 
with the heterogeneities of the structure cause an electrical polarization which can have a 
significant impact on the xerographic performance of the photoreceptor. The purpose of the 
present series Of papers is firstly to describe the principles of thermally stimulated discharge 
techniques, the associated theories and interpretation of the current spectrum and secondly, to 
discuss applications of these techniques to a-Se:Te/Se double layer photoreceptors. The 
principles of thermally stimulated discharge and relevant theories are discussed. 

1. I n t r o d u c t i o n  
There are several experimental techniques for the in- 
vestigation of the electrical conduction processes in 
high-resistivity materials and devices. The most com- 
mon of these are decay methods, time-of-flight meth- 
ods, contact electrification, direct measurements of 
I - V  curves and thermally simulated discharge. Ap- 
plications of the decay methods and xerographic time- 
of-flight (XTOF) to amorphous semiconductors have 
been described previously [1-3]. 

The purpose of this paper is firstly to demonstrate 
that thermally simulated discharge (TSD) is a suitable 
method for investigation of traps, space charge and 
dipole processes in insulators, and secondly to de- 
scribe relevant theories on the application of this 
technique to multilayer amorphous semiconductors. 

Experimental results and the method of interpreta- 
tion are the subject of separate papers. 

2. Background 
2.1. Principles of TDS 
This technique involves investigation of the charge 

decay by heating the sample under test at a constant 
rate. The decay processes are thus investigated as a 
function of temperature instead of time. The technique 
can be implemented under open circuit or short circuit 
conditions as shown in Fig 1. A typical sample in the 
two configurations is a 10-50 gm film of a few centi- 
metres square area coated on one or both surfaces 
with evaporated metal alloys. While the classical sam- 
ples were electrets made of thick plates of carnuba wax 
or similar substances [4], more recent electret research 
deals with thick-film polymers such as polyfluoro- 
ethylene propylene (PEP), polytetra fluoroethylene 
(PTFE), polyvinylidene fluoride (PVDF) [5-7] and 
high-resistivity semiconductors such as amorphous 
selenium (a-Se) [8, 9]. An electret here is defined as 
any substance for which the decay time of its stored 
polarization is long in relation to the characteristic 
time of experiments performed on the material [10]. 
Electrets find application in a wicte variety of fields 
such as electret microphones [11], electrophoto- 
graphy [12], gas filters [133, etc. 

If I is the sample thickness and g the air gap, then 
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Figure I Physical arrangements for a sample in the TSD experimcnt. 

the integral of the electric field, E, for the two config- 
urations in Fig. 1 are given by 

fY fo Edx ~ 0, Edx =/= 0, J 4 = 0 (1) 

for the open circuit electret and 

l Edx O, J v LO (2) 

for the short-circuit electret. In both cases the measur- 
able experimental quantity is the current density, J. 

The basic principles of the technique can be best 
illustrated with the aid of Fig. 2 where the schematic 
evolution of the following experimental parameters 
during the polarization and depolarization stages are 
plotted as a function of time: (a) field across the 
electroded sample; (b) temperature of the sample; (c) 
output current across the electrodes. In the polariza- 
tion stage, the sample, after being electroded, is first 
heated to some elevated temperature, Tp,. where it is 
held at a constant value. In polymers, Tp is normally 
slightly above the glass transition temperature. A d.c. 
bias field, Ep, is then applied across the electrodes Up 
to a time, tp, after which the temperature of the sample 
is quickly reduced to a low-value T a (normally below 
room temperature) and held constant. The static field, 
Ep, which is still being applied during the cooling 
down period is then switched off after a total elapsed 
time, t~. The sample is then short-circuited through a 
sensitive current meter where it will then be depolar- 
ized. In the depolarization stage, the temperature is 
raised from the time t a at a constant rate, t, typically 
4~ rain -1 up to and beyond the temperature at 
which the particular relaxation process under study 
has ceased to dominate. In most cases, the sample 
under test would be discarded after a single TSD cycle. 

There are several processes which contribute to 
TSD, the driving force being the restoration of charge 
neutrality. For example, in polymers the total charge 
of an electret is usually composed of oriented dipoles 
and space charge, which cause deviation from local 
charge neutrality. Before the electret is formed the 
neutral polymer already contains free charges. At high 
temperatures these carriers are uniformly generated 
throughout the entire specimen by disassociation of 
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Figure 2 Principles of the TSD techniques. 

neutral entities, resulting in the conductivity of the 
material, which can be of either an ionic or electronic 
nature. Therefore, in addition to the excess charges, 
there'must be free equilibrium charges in the electret. 
These do not contribute to the net charge, but they are 
responsible for the ohmic conductivity. 

The decay of the net charge of an electret during 
TSD will result from three mechanisms in dipole 
reorientation, diffusion and drive of excess charge 
motion and local ohmic conduction. The disori- 
entation of dipoles involves the rotation of a couple 
pair of positive and negative charges, and requires a 
certain energy. The space charges are non-uniformly 
stored, and often reside near the electrodes. During 
heating they will be mobilized and neutralized either 
at the electrodes or in the sample by recombination 
with charges of opposite sign. The forces driving the 
charges are their drift in the local electric field and 
diffusion, which tends to remove concentration gra- 
dients. The local ohmic conduction neutralizes part of 
the excess charge by supplying opposed equilibrium 
charges and does not contribute to the external cur- 
rent during TSD. 

2.2 Maxwell-Wagner effect 
For a heterogeneous system of different layers or 
phases in the solid dielectric, the decay of the polariza- 
tion arises from interracial charges which are accumu- 
lated near the interfaces. The unequal conduction 
currents in the various phases of the system result in 
the formation of such charges which leads to the so- 
called inteffacial polarization. The physical hetero- 
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genetics may result from, for example, grain bound- 
aries in polycrystalline solids or fabricated laminates 
of different amorphous materials, as in the multilayer 
xerographic photoreceptors. 

The phenomenon of interfacial polarization is due 
to the presence of two phases, one of much higher 
conductivity than the other. The amorphous phase 
will give rise to higher mobilities than the crystalline 
phase. If the amorphous phase contains a sufficiently 
large number of conducting species, interfacial polar- 
ization results, i.e. charge carriers are trapped at phase 
boundaries. Alternatively, when the material contains 
many irregularly distributed traps with different 
depths, as in most polymers, carriers might move in 
the direction of the field until they fall into deep traps 
from whichthey do not have enough energy to escape 
unless reactivated by a temperature increase. Both 
these interfacial polarization effects constitute a vol- 
ume effect. As the Maxwell-Wagner losses are only 
apparent for low measuring frequencies usually below 
1 Hz, the TSD technique is particularly useful in the 
range of equivalent frequencies of 10-1-10-4 Hz. 

2.3. Detection efficiency of TSD 
The magnitude of the TSD current depends on the 
effective charge retained by the electret, but not all the 
decay processes contribute fully to the external cur- 
rent. For example, in decay processes that involve 
space charges, only part of the decay is observed 
between the shorted electrets. This experimental char- 
acteristic may be due to either one or a combination of 
the following reasons [13]. 

(i) Some of the charges could be neutralized by an 
internal ohmic conduction which will pass unnoticed 
by the external circuit. This will be especially true for 
materials of relatively high intrinsic conductivity, like 
polar polymers. 

(ii) Some of the charges may recombine with their 
image charges at the non-blocking electrodes, there- 
fore only part of the total induced image charge will be 
free to flow into the external circuit. The nature of the 
dielectric-electrode interface will thus play an import- 
ant part in the efficiency of the TSD current measured. 

(iii) Current released by diffusion of the excess char- 
ges will depend on the blocking nature of the elec- 
trodes. A zero external current would result if com- 
pletely non-blocking electrodes are used. 

In general the detection efficiencies for processes 
involving space charges may be improved by incor- 
porating a highly blocking layer between sample and 
electrode such that any charge exchange across the 
electrode-dielectric interface will be blocked. Such a 
physical arrangement can be easily realized by utili- 
zing an air gap as the blocking layer as shown in 
Fig. la. Also, as the net field in the solid is now non- 
zero, the decay of excess charges by ohmic conduction 
can be observed. It has been shown that for such 
physical systems, decay of the excess charges by inter- 
nal ohmic conduction will dominate that of drift and 
diffusion [14]. TSD measurements of this type are 
often called air-gap TSD or open-circuit TSD. 

Alternatively, in such systems, measurement of 
the voltage induced on the non-contacting electrode 
would also be useful in the study of the persistent 
polarization in the sample bulk. This method may be 
named "charge TSD" because it now measures the 
evolution of the effective surface charge on the electret 
as it is being heated up. Compared with the TSD 
current measurements where the measured signals are 
very small (typically 10-13-10 -7 A), charge TSD has 
the advantage of measuring large voltage signals 
(lO-lO 3 v). 

3. Relevant TSD theories 
3.1. Theories involving space charge 
The TSD decay of a polarization due to excess electri- 
cal charges is a more complex phenomenon than that 
of a decaying dipole polarization. For an understand- 
ing of the observed TSD current curves, a satisfactory 
analytical theory of the movement of excess charges in 
the dielectric is needed. In addition to the uncertain- 
ties in the actual physical processes accompanying the 
space charge decay, the theory involves solving partial 
differential equations in the spatial and temporal 
parameters for the space-charge distribution. No gen- 
eral solution could be derived for the non-linear par- 
tial differential equations involved without making 
simplifying assumptions for the charge-decay mech- 
anisms [14-16]. 

There are two basic models which are usually con- 
sidered as starting points for a TSD theory involving 
space charges. In the charge-motion model, the cur- 
rent is assumed to be essentially governed by the bulk 
conductivity of the material (electronic or ionic), irres- 
pective of its possible trapping properties. In the trap- 
ping model, the current is assumed to result only from 
carriers (usually electronic) released into the conduc- 
tion (or valence) band as the charge distribution re- 
turns to equilibrium. 

3. 1.1. The  c h a r g e - m o t i o n  m o d e l  
The decay of a positive space charge of density p(x, t) 
in a non-polar medium during TSD can be expressed, 
using the continuity equation as 

~p(x, t) 
-~t - g(T)~p(x, t)E(x, t)/~x - cy(T)~g(x, t)/~x 

(3) 

where It(T) is the drift mobility of the space charges 
causing the polarization and o(T) is the intrinsic 
ohmic conductivity of the medium. Both ~t(T) and 
c~(T) are assumed to be thermally activated and obey 
the Arrhenius shift. The decay of charges via diffusion 
is neglected in this model. The first term on the right- 
hand side accounts for the decay of the space charges 
via a drift (hopping over a single potential barrier) 
motion while the second term accounts for the decay 
by ohmic conduction. The electric field, E, and the 
space charge density, p, are related by the Poisson 
equation 

~E(x, t) p(x, t) 
- ( 4 )  

~x t o 
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The current density released by the space charge mo- 
tion is then given by [14] 

aE(x, t) 
j(t) = e0~; ~--~-- + [Ix(T) p(x, t) + ~(T)]E(x, t) 

(5) 

Also, because the sample is short circuited 

f i E  (x, t) = (6) dx 0 

where l is the thickness of the sample. By integrating 
with respect to x and Using equation 4, Equation 5 can 
be rewritten as 

j(t) = [Co ~ Ix(T)~21] [E2(I, t) - E2(0, t)] (7) 

where E(0, t) and E(l, t) are the values of the electric 
field at the electrodes obtained by the integration of 
Equation 4 and using Equation 6. The expressionfor 
the current density in Equation 5 also shows that both 
the displacement and ohmic conduction currents do 
not contribute to the external current during the TSD. 

The partial differential equations describing the ac- 
tual motion of the space charges can only be solved 
analytically for very simple charge distributions. The 
following expression has been obtained for the case of 
a box distribution of a space-charge cloud whose 
initial charge density, p(x, 0), is constant up to a depth 
offo [14] 

j(t) = - g(T)pZ(x0,t)f(t)2 [1 -f(t)/l]/2~ o al (8) 

During the decay, the cloud expands into the sample 
bulk with its leading front, f(t), heading towards the 
opposite electrode (x = l) at a velocity [14] 

df(t) 
= g(r)E( f  t) (9) 

dt 

Xo(t) is the zero field point, i.e. E at Xo(t) = O, in the 
sample bulk. From Equation 7 it is also clear that 
once f(t) reaches the back electrode, at l, the current 
released will abruptly drop to zero. A transit time, tz, 
is thus defined by the time taken by the leading front, 
initially atfo to drift across the sample towards l, the 
back electrode. 

For a highly resistive medium (cy(t) ~_ 0) and t < t~, 
Equation 5 can also be written as 

j(t) = eoa~Et(/,t) (10) 

because no charge has reached the back electrode at l, 
p(l, t) = 0 and the total charge that is released can be 
found by integrating Equation 10 which yields to 

Q(t~) = ~oa[E(l, t~)- E(l,O)] (11) 

In this model, the amount of charge released will 
depend on the initial depth of penetration of the excess 
charges, fo, and the total charge recovered will be a 
small percentage of the initial charge stored. This 
percentage would be smaller still if ~(T) = 0 because 
internal neutralization caused by ohmic conduction 
has to be accounted for. 

Distributions other than that of the box model have 
also been consideredl For a floating space-charge 
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layer, i.e. one that is touching neither electrode, it has 
been shown that for the case or(T)= 0, the TSD 
current during 0 ~< t ~< tx can be expressed as [17-20] 

j(t) = [g(T)Q,o/l] [E(1, O) - (~0/2~o~] 

exp[(O.o/%el) f i  ~t(T)dt ? (12) 

where 
('/ 

= Jo p(x,t) dx 

= tog[E(/, t) - E(O, t)] (13) 

is the total space charge stored, and (~(t)= (~o for 
t < t~. Equation 12 has a temperature dePendence 
similar to that of a single dipole relaxation which 
implies that the initial part of the TSD plot due to the 
drift of the space charges can be analysed in the same 
way as that of the Debye peak of a dipole depolar- 
ization. In contrast to the latter, however, the current 
does not have a linear dependence on the initial mag- 
nitude of polarization stored. Another characteristic 
of the TSD current plot due to the drift of excess 
charges is that the temperature of the TSD current 
peak will shift towards a lower temperature as the 
initial density of stored charges is increased. With a 
higher density of stored charges, the resulting driving 
field will be stronger, thus accelerating the drift of the 
charges towards the electrodes. This results in a faster 
discharge of the sample. 

3. 1.2. Effect o f  t rapping 
The above discussions on the main features of the 
charge-motion model assume that the discharge cur- 
rent is essentially governed by the drift mobility of the 
excess charges as well as the intrinsic conductivity of 
the medium. Any possible trapping effects are neg- 
lected by this model. The theory of TSD currents 
based on trapping models has been extensively dis- 
cussed by several investigators where it was generally 
assumed that band-theory concepts are applicable 
[14, 17, 18]. In this model, a TSD current peak would 
correspond to a group of electronic carriers that had 
been previously released from a set of trapping levels 
within the band gap and was now driven by the 
internal field towards the electrodes. Unlike the space- 
charge motion model, which predicted theappearance 
of only one TSD current peak, a model based on the 
trapping model can account for the appearance of 
several TSD current peaks each originating from an 
ever energetically deeper set of traps. 

During the passage of the thermally released car- 
riers towards the shorted electrodes, some of the car- 
riers may experience a series of trapping/detrapping 
events or they may recombine. The motion of a carrier 
with fast retrapping can be thought of as a hopping 
motion and as such, the TSD current expression will 
be similar to the charge motion model described in the 
previous section [14]. However, in the trapping 
model, carrier recombination replaces intrinsic 
conduction as one of the internal neutralization pro- 
cesses. This similarity of the TSD current expression 



again reiterates the caution needed in interpreting 
TSD data, failure of which will lead to erroneous 
conclusions. 

The case for slow retrapping has also been invest- 
igated and again it is noted that for manageable TSD 
expressions to be obtained, certain drastic simplifying 
approximations regarding the trapping kinetics, initial 
charge distribution and nature of electrodes have to be 
made [17, 18]: It has also been pointed out that unlike 
the case of a fast retrapping where the TSD current 
plots are dependent on the initial depth of the excess 
charge penetration, the TSD plots for the case of slow 
retrapping are independent of the initial depth of 
charge, allowing an experimental distinction to be 
made [14]. 

3.2. TSD of heterogeneous systems 
This section considers the TSD behaviour of two types 
of heterogeneous systems. In the first type, the sample 
itself is a laminate of two different materials sand- 
wiched between intimately contacting electrodes, 
while in the second case, the homogeneous solid 
sample is electroded on only one of its surfaces. If an 
electrode is brought close and parallel to the free 
surface, then this physical arrangement can be con- 
sidered similar to the first class, but now with an air 
gap as one component of the laminate. 

3.2. 1. Doub leHayer  laminate  
When a heterogeneous structure is subjected to a 
forming process as that described in Section 2.1, a 
space-charge layer will be formed at the boundary of 
the layers. This is usually called a Maxwell-Wagner 
polarization and is caused by the unequal magnitudes 
of the ohmic conduction currents entering and leaving 
the interface, resulting in a net accumulation of charge 
which may be frozen-in, upon cooling of the sample. 
Upon removal of the applied field and heating, the 
accumulated charges can be neutralized by ohmic 
conduction currents flowing in opposite directions in 
the respective layers. This neutralization of the inter- 
facial charges will give rise to a peak in the TSD 
current spectrum. The charging and discharging beha- 
viour of the system is briefly described below. 

3.2.1.1. Charging. Both layers are assumed to be 
non-polar and have temperature-dependent con- 
ductivities, o(T) and % (T), and dielectric constants, a 
and al (assumed to be temperature independent), re- 
spectively. If an applied v91tage, V,, is applied across 
the electrodes, the equilibrium current density within 
the two layers can be expressed as 

dE 1 (t) 
j(t) = ~o~1 d - - t -  + al[T)Et(t)  (14) 

dE(t) 
= ~ o ~ - ~ -  + a(T)E(t) 

where E l(t) and E(t) are the time-dependent electric 
fields in the layers. These can be related to the applied 

voltage, Va, by 

V~ = E~(t) l l  + E( t ) l  (15) 

where l 1 and 1 are the thickness of the layers. 
At the interface, there will be a gradual build-up of a 

space charge, Q(t), which is assumed to be confined to 
a thin layer. This means that E 1(0 and E(t) are uni- 
form quantities within their layers and also Q(t) is 
essentially a surface charge. The build-up of this 
charge can be described by using the continuity equa- 
tion which yields to 

dQ(t) 
at - cYl (T)EI( t ) -  cr(r)E(t) (16) 

Also, for the interface, a Gauss law results 

O(t) = ~oe E(t) - ~o~ 1 El(t  ) (17) 

From Equations 14 and 15, the potential difference 
across layer 1 can be written as a differential equation 

d V 1 (t) 
d--~ + ~g(T)Vl(t) = ~(T)VI(O) (18) 

where 

[~(T) - (19) 80 E 

= k z, + o + 7 (2o) 

Not that V1 (0) is the capacitively divided value of the 
applied voltage, at t = 0. Using Equation 14 this can 
also be written as 

VI(0) = Vail + (al/l)/all] -1 (21) 

The solution for Equation 15 can be shown to be 

vl(t) = iv1(0)- v1(oo)] 

Using Equations 15 and 16 and the fact that as 
t--* oo, dQ/dt--* 0 the final equilibrium value of 
V l(t) can be expressed as 

{ 1+ LFcyl(T)I //~ - 1 1 1  J J  (23) Vl(oo) v. 

Using Equations 23, 16 and 17, then as t -* oo, the 
final charge density established at the interface is given 
by 

.4, 
1 + [11 ~ ( r ) l t  m (r)] 

Therefore, the magnitude and sign of Q( oo ) will de- 
pend not only on the applied voltage, Va, but also on 
the ratio ~1 G(T)/e ~1 (T) being greater or smaller than 
unity. For a given value of V,, a homocharge or a 
heterocharge may be obtained at the interface. The 
sign and magnitude of Q(oo) will depend on the 
temperature of the sample via the temperature de- 
pendencies of ol (T) and or(T) (assuming al and e are 
temperature independent). In the particular case when 
the individual conductivity curves, or(T) versus T, 
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intersect, the temperature of formation of the electret 
becomes an important parameter in determining the 
nature of the interfacial charges than can be stored. 

From Equation 24 we also note that Q( Go ) is large 
when o(T) and cy 1 (T) differ significantly. For example 
in an air-gap system where the condition 
ch (T) >> cr(T) may be applicable 

~oeVa 
Q(Go)-  l (25) 

i.e. the magnitude of the stored charge will be inde- 
pendent of the forming temperature. 

3.2.1.2. Discharging. During TSD, the frozen-in 
charges at the interface will be neutralised by ther- 
mally generated carriers of the opposite sign which are 
conveying to the interface by ohmic conduction. Since 
now the applied voltage is removed 

and also 
VI (t) l + V(t)l = 0 (26) 

d Vl(t) 
dt 11 + 13g(T)Vl(t) = 0 (27) 

The decay of V1 (t) found from the solution of Equa- 
tion 27, as a function of temperature T is given by 

Vt(T)  -~ V l ( t d ' e x p [ - - ! f T ~  ~ g ( T ) d T l  (28) 

Vl(td) is the potential difference across layer 1 at the 
start of the TSD and can be related to the stored 
interfacial charges by using Equations 15 and 17, 
yielding 

- Q(td) 
Vl(td) = (29) 

~o(~1/11 + g/l) 
The current released during TSD is found by 
substituting Equation 28 into Equation 14 

j(T)= [~I(T)- [Jg(T)](%gl VI~T1 ) ) 

where 

(30) 

m ( r )  
[~I(T) - -  (31) 

go g 1 

Substituting for 131(T ) and ~g(T) into Equation 30 
results in the TSD current density 

(gCYl ( T )  --  gl (Y(T) ~ 
j(T) = \ ~ll+~ll~ j VI(T ) (32) 

From the above Equation it can be seen that the TSD 
current is the algebraic sum of two opposing currents 
in the layers. The TSD current is largest, hence the 
measuring efficiency highest, when ~1 o(T) differ signi- 
ficantly. The direction of the TSD current will depend 
on VI(T) and on the relative magnitudes of slot(T) 
and soy1 (T). A current reversal in the course of a TSD 
run will also be possible if the conductivity curves 
(or(T) against T) of the layers intersect as the temper- 
ature is increased. This means that the charges are first 
dominantly neutralized by the ohmic dissipation cur- 
rents in one layer followed by the dissipation currents 
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in the second layer which is in the opposite direction. 
When the conductivity curves do not intersect, the 
TSD current will usually be represented by one asym- 
metrical peak, the position of its current maximum 
being determined by the faster of the two ohmic 
dissipation processes. It can also be shown that the 
temperature of the current maximum can be expressed 
as 

Tm--[  g~163162 11/2 

(33) 

where A and A 1 are the energies of activation for 
intrinsic conduction in the respective layers. 

The Debye-like character of the decay of the inter- 
facial charges also allows the evaluation of the activa- 
tion energy for the Maxwell-Wagner relaxation to be 
approximated by methods that are similar to those 
used for dipolar disorientation [14]. 

4. Conclusion 
Principles and the theories described in this paper 
serve the basis for the subsequent papers on the ap- 
plication of TSD to multilayer amorphous semicon- 
ductors. In this paper, several types of persistent elec- 
trical polarization were described. 
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